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Abstract
The Distributed Pseudo-tree Optimization Procedure (DPOP) is a well-known message passing algorithm that provides
optimal solutions to Distributed Constraint Optimization Problems (DCOPs) in cooperative multi-agent systems. However,
the traditional DCOP formulation does not consider constraints that must be satisfied (hard constraints), rather it concentrates
only on constraints that place no restriction on satisfaction (soft constraints). This is a serious shortcoming as many real-
world applications involve both types of constraints. Traditional DPOP algorithms are not able to benefit from the existence
of hard constraints, where an additional calculation is required to handle such constraints. This results in longer runtimes.
Thus scalability remains an issue. Additionally, in the standard DPOP, the agents are arranged as a Depth First Search
(DFS) pseudo-tree, but recent work has shown that the construction of pseudo-trees in this way often leads to chain-like
communication structures that greatly impair the algorithm’s performance. To address these issues, we develop an algorithm
that speeds up the DPOP algorithm by reducing the size of the messages exchanged and increases parallelism in the pseudo
tree. For this purpose, initially, we improve the path for exchanging messages. Next, we introduce a new form of constraint
propagation, which we call cross-edge consistency. Our theoretical evaluation shows that our proposed algorithm is complete
and correct. In empirical evaluations, our algorithm achieves a significant reduction in the runtime, ranging from 4% to 96%,
compared to the state-of-the-art.

Keywords Multiagent system · Distributed problem solving · Distributed constraint optimization · DPOP

1 Introduction

Distributed Constraint Optimization Problems (DCOPs) is
a commonly used framework involving multiple agents
that interact with one another to achieve a common
goal [23]. A number of real-world problems, such as
distributed event scheduling [13], scheduling smart home
devices [6] and allocating tasks in mobile sensor networks
[11], can be modeled with this framework. Specifically,
a DCOP consists of several distributed cost functions
that collectively form a global objective function (i.e. the
common goal). Each of these cost functions represents a
constraint relationship among a set of variables that are
controlled by the agents contributing to that constraint. In
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more detail, each agent is responsible for setting the value(s)
of its variable(s) from a finite domain(s). However, they can
communicate with their neighboring agents, and thus can
influence the value assignment of each other. The goal of a
DCOP solution is to set every variable to a value from its
domain to minimize the number of constraint violations or
maximize the global objective function.

Over the last couple of decades, a number of algorithms
have been proposed to solve DCOPs. They are often clas-
sified into two types: incomplete and complete algorithms.
The former experiences better computation and commu-
nication costs at the expense of solution quality. Among
the incomplete DCOP algorithms DBA [9], DSA [24] and
Max-Sum [4] are the most notable. Although this class
of algorithms perform well in terms of computation and
communication cost, a good number of applications, such
as Wi-Fi Channel Assignment [16] and Reactive Network
Resilience [10], cannot afford to sacrifice the quality of the
solution. To solve this, researchers have developed com-
plete algorithms. This class can be further classified as
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search-based and inference-based algorithms. The former
use a search technique to find the optimal solution from a
set of possible assignments (e.g. SyncBB [8], ConcFB [15],
ADOPT [14]). The latter, such as DPOP [17], Action-GDL
[22], BrC-DPOP [5], are based on dynamic programming
techniques. Among them, the Distributed Pseudo-tree Opti-
mization Procedure (DPOP) has gained particular attention
since it can often provide exact solutions for many real-
life problems, often at the expense of low communication
cost. This is achieved by following a synchronous message
passing algorithm, where the agents exchange their utility
and value assignments by following a synchronous message
passing protocol.

To date, several DPOP variants have been proposed. O-
DPOP [18] and MB-DPOP [19] have made improvements
in terms of the memory requirements of the original
algorithm and SS-DPOP [7] improves the participating
agents’ privacy. However, a notable issue with all of these
variants is that they are not able to handle constraints
that must be satisfied (i.e. hard constraints). Instead, they
only deal with soft constraints. Unlike hard constraints,
soft constraints poses a profit/loss for each possible value
assignment to its corresponding variables. Nonetheless,
hard constraints, along with soft constraints, are seen in
many well-known DCOPs, such as distributed radio link
frequency assignment [1] and distributed event scheduling
[13]. To confront this shortcoming, two notable extensions
of DPOP, H-DPOP [12] and BrC-DPOP [5], have been
proposed.

In more detail, H-DPOP reduces the computation
cost of DPOP by ruling out infeasible combinations
of the variables, and thus generates smaller messages.
Infeasibe combination of values for variables sharing a hard
constraint, are those, that are restricted by that specific hard
constraint. This is done by a Constraint Decision Diagram
(CDD), which graphically represents a solution set for n-
ary constraints [3]. To do so, H-DPOP performs join and
projection operations on CDDs that are computationally
expensive. At the same time, it is not possible to fully exploit
hard constraints to prune the domain of a variable using this
approach. Addressing these issues, BrC-DPOP introduced
the notion of a Value Reachability Matrix (VRM). A VRM
is a binary matrix representation of a constraint that requires
a large number of matrix multiplications that largely affect
the time complexity. Unfortunately, the issues of CDD, still
exist for VRM to some extent. Therefore, it is worth noting
that similar to the aforementioned DPOP extensions, BrC-
DPOP uses a depth-first search pseudo tree to graphically
represent a DCOP. Recently, it has been shown that this
approach often results in a chain-like structure that impairs
the performance of the algorithm due to the lack of
parallelism [2]. Nevertheless, the algorithm proposed in
the paper, the so-called BFS-DPOP, shows the significance

of an alternative graphical representation − a breadth-
first search pseudo tree. To be exact, BFS-DPOP enhances
parallelism, and thus reduces the runtime of the algorithm.
However, BFS-DPOP cannot handle hard constraints, and
thus it is not directly applicable to BrC-DPOP.

Against this background, we propose a new variant of the
DPOP algorithm, that we call Cross-Edge Consistent DPOP
(CeC-DPOP). The contributions of our algorithm are as
follows. Firstly, it takes advantage of increased parallelism
through the use of a BFS pseudo tree as the communication
structure. Our algorithm can also make use of hard
constraints to reduce the domain size of a variable. In this
context, unlike BrC-DPOP that enforces branch consistency,
we develop a new form of consistency, called Cross-edge
Consistency.1 This particular form of consistency helps to
remove nonassignable values from a variable’s domain. In
addition to this, we have also used arc consistency, for
further reduction in domain size. This enables us to produce
smaller message sizes that improve DPOP’s runtime.
Finally, we introduce a data structure, called a Consistency
Matrix, which is used to store constraint information.
Unlike VRM, the Consistency Matrix requires a smaller
number of computations to remove nonassignable values
from the domain of a variable. The use of a BFS pseudo-
tree along with the cross-edge consistency enforced by
Consistency Matrices enables CeC-DPOP to outperform the
previous state-of-the-art algorithms in terms of runtime.
We theoretically prove that our algorithm CeC-DPOP is
complete and correct. We then evaluate the complexity
of the algorithm and observe that it has polynomial-time
computational complexity. Furthermore, we empirically
evaluate the performance of our approach, and observe a
significant reduction of runtime, up to 18-96% compared to
DPOP, 10-89% compared to BFS-DPOP, 5-67% compared
to BrC-DPOP, 55-75% compared to H-DPOP.

The remainder of this paper is structured as follows.
We describe the problem in the section that follows. Then,
in Section 3, we discuss the complete process of CeC-
DPOP with a worked example. Afterward, we discuss
the complexity of the algorithm in Section 4. Section 5
presents the theoretical analysis. In Section 6, we present
the empirical results of our method compared to the current
state-of-the-art, and Section 7 concludes.

2 Background and Problem Formulation

A DCOP model can be formally expressed as a 5-tuple 〈A,
X, D, F, α〉 where:

1Cross-edge Consistency is a new form of consistency introduced in
this paper for pruning out those possible values for the variables in a
DCOP which cannot possibly be part of a consistent solution.
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Fig. 1 A constraint graph representation of a DCOP. Here, the edges
having relational operators are the hard constraints

– A = {a1, a2, ...., ak} is a set of agents.
– X = {x1, x2, ...., xn} is a set of variables2, where n≥k.
– D = {d1, d2, ...., dn} is a set of domains for the variables

in X, where each di ∈ D is the available domain for the
corresponding variable xi ∈ X.

– F = {f1, f2, ...., fm} is a set of constraint functions (also
known as utility or cost functions). Constraints are used
to represent the relationship among the variables and
denotes the utility value for each possible assignment of
those variables. In constrained optimization problems
a value (penalty) is assigned for each possible value-
combination of variables sharing a constraint. In a
maximization problem the sum of the penalty of every
constraint is maximized and it is the opposite for
minimization problem. In more detail, each function
fi(xi) depends on a subset of variables xi ⊆ X that
can be considered as the scope of that function. To
represent the relationship among the variables in xi,
the function fi(xi) denotes the utility value for each
possible assignment of those variables. Each constraint
fi ∈ F can be hard in which case the value combinations
that must be avoided are denoted as 0, whereas the
combinations that are allowed are represented by 1.
In our paper, we used 1 to indicate a legal value
assignment since we are considering a maximization
problem. Relational operators like; greater than, less
than, equal to, etc, are a common example of hard
constraint. The remaining type is the soft constraint
indicating that each value combination results in a finite
utility/cost value and there is no restriction in value
assignment. The dependencies among the variables
can be used to construct a constraint graph that has
been used to represent DCOPs graphically. In this
representation, each variable is associated with a node
and connected to each other through an edge.

2Throughout this paper, we consider agents and variables as inter-
changeable.

Fig. 2 A sample cost table for the soft constraint involving variable x5
and x6

– α : X → A is an onto mapping function that assigns the
variables X to the set of agents A.

X∗ = argmax
X

∑

fi∈F

fi(xi) (1)

Within this model, the main objective of a DCOP algorithm
can be expressed as each agent assigning the values to
its associated variable(s) from the corresponding domain(s)
that can be expressed as X∗, in the pursuit of the
maximization or minimization of the sum of the utility
functions (i.e. the global objective function). In this paper,
we consider the maximization problem only (Equation
1). However, the algorithm can also be applied to a
minimization problem. For example, in Fig. 1, a DCOP
instance is graphically represented as a constraint graph.
Here, we consider the set of variables X = {x1, x2, ..., x7},
each having domain di = {0, 1}. The cost matrix of the soft
constraint involving variables x5 and x6 is shown in Fig. 2.
The remaining constraints in the graph that are defined by
relational operators are the hard constraints.

As mentioned in Section 1, DPOP is a complete, syn-
chronous message passing algorithm for solving DCOPs.
Specifically, it uses a dynamic programming technique on
a DFS pseudo-tree in a distributed manner. DPOP is exe-
cuted through three phases. In the first phase, a distributed
DFS traversal is started from the root (held by an agent)
of the constraint graph using the distributed DFS algorithm
[20]. As a result, a DFS pseudo-tree structure is built where
each agent labels its neighbors as parents, pseudo-parents,
children or pseudo-children and edges are identified as tree
or back edges. For example, after this phase, the constraint
graph of Fig. 1 results in the DFS pseudo-tree of Fig. 3. The
resulting pseudo-tree serves as a communication structure
for the subsequent phases of DPOP. The second phase is the
Util propagation phase in which each agent, starting from
the leaves of the constraint graph, sends a UTIL message
to its parent. The UTIL message is generated by aggregat-
ing the constraint utilities between the current node and the
variables in its separator. Here, a separator is defined as the
ancestors of the current node that are connected directly to
this node or its descendants. Again, the utilities in the UTIL
message received from its children are also aggregated with
the constraint utilities of the current node. Lastly, the current
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Fig. 3 DFS Pseudo-tree

node projects itself out by optimization over the received
utilities. Finally, the value propagation phase is initiated by
the root agent. Each agent selects its optimal assignment
using the cost function computed in the UTIL propagation
phase and the VALUE message received from its parent.
Afterward, each agent broadcasts its assignment to its chil-
dren. When every agent has chosen its optimal assignment,
the algorithm terminates.

DPOP can be executed on different branches indepen-
dently using a DFS pseudo-tree as its communication
structure.3 Although DPOP produces a linear number of
messages, message size is exponential. This is because, a
message consist of all possible value assignment to a vari-
able pair, sharing a constraint. Another notable limitation
of the DPOP algorithm is that it does not exploit hard con-
straints along with soft ones. These two limitations have
been resolved by the BrC-DPOP algorithm [5].

In particular, to deal with hard constraints, BrC-DPOP
enforces arc consistency and introduces a weaker form
of the path consistency which can be applied along the
path of a pseudo-tree to reduce message size. Specifically,
the algorithm starts by generating a pseudo-tree structure
followed by a path construction phase which is subsequently
used to get the knowledge of the direct paths from each
agent to its parent and pseudo-parents. In the next phase, arc
consistency is enforced in a distributed manner. Then the
most important phase is executed where branch consistency
is exploited in a distributed way. This phase aims to
ensure consistent pairs of assignable values between an
agent and its pseudo-parents considering every pseudo-
tree path between them. Finally, the UTIL and VALUE
propagation phases are executed considering the updates of
the pseudo-tree. BrC-DPOP reduces the message size due to
branch-consistency enforcement, as well as faster runtime

3A communication structure is a path along which DCOP message
passing takes place.

Fig. 4 BFS Pseudo-tree

since it prunes the values of the variables. Though BrC-
DPOP improves the DPOP algorithm to a greater scale,
the communication structure is a DFS pseudo-tree, and as
previously mentioned, this often becomes chain-like4 in
many experiments for example in Fig. 3. This condition
greatly reduces the algorithm’s performance. To deal with
this drawback, [2] proposes the BFS-DPOP variant which
uses the Breadth-First Search (BFS) pseudo-tree as the
communication structure.

In more detail, BFS-DPOP operates on a Breadth-First
Search (BFS) pseudo-tree that is used as the communication
structure. This increases the parallelism because it produces
more branches than that of its DFS counterpart. Here, Fig. 4
depicts the transformedBFS pseudo-tree of the corresponding
constraint graph of Fig. 1. In BFS-DPOP, following the
construction of BFS Pseudo-tree, an additional phase,
namely, a cluster removal phase, is added. In this phase, for
two end-points of a cross-edge, one of them is selected as
the cross-edge belonger. The value of a cross-edge belonger
is assigned by the agent itself. In contrast, the value of
the non-belonger of a cross-edge is assigned by the root
agent. Finally, the UTIL and VALUE propagation phase is
executed on the BFS Pseudo-tree considering the changes
that occurred in the previous phases. Even though BFS-
DPOP experiences shorter communication paths, and hence
less communication time, through the use of a BFS pseudo-
tree, the algorithm produces messages with exponential size
as the system grows. Moreover, this algorithm cannot deal
with hard constraints.

To summarize, the primary issue of the current DPOP
variants, based on this context, is the lack of an effective
domain pruning process, in the presence of hard constraints.
There is also a lack of an appropriate pseudo-tree structure,
with more branches and reduced height. Our proposed
approach, the Cross-Edge Consistent DPOP (CeC-DPOP),
addresses both of these issues.

4The work presented in [2] has shown that DFS traversal often leads
to low-quality chain-like pseudo-trees with poor parallelism.
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3 The Cross-Edge Consistent DPOP
Algorithm (CeC-DPOP)

CeC-DPOP improves the DPOP algorithm by enforcing
cross-edge consistency to reduce the domain size of the
variables of a given DCOP. To be precise, cross-edge con-
sistency is a new version of consistency, enforced by CeC-
DPOP. Unlike branch-consistency, cross-edge consistency
can be enforced in a shorter time. CeC-DPOP particularly
achieves this through the use of a Consistency Matrix and a
BFS pseudo-tree as the constraint representation data struc-
ture and the graphical representation of a DCOP, respec-
tively. Cross-edge consistency is enforced along the path
from two endpoints of a cross-edge to the lowest node, con-
taining both these endpoints as descendants (i.e. lowest com-
mon ancestor). The use of cross-edge consistency eliminates
the nonassignable values from a variable’s domain. This
decreases the time required to perform the join and pro-
jection operation on UTIL messages. This way, we obtain
reduced message size and runtime compared to the cur-
rent state-of-the-art. Moreover, by using a BFS pseudo-tree
instead of a DFS pseudo-tree, CeC-DPOP can increase
parallelism and shorten the tree depth. Based on the prob-
lem formulation in Section 2, we now formally define
cross-edge consistency:

Definition 1 Given a BFS pseudo-tree associated with
a DCOP problem instance, we define a CE relationship
(Cross-Edge relationship) on its variables: xi and xj if and

only the Lowest common Ancestor, LCA(xi, xj ) = xLCA,
where xLCA ∈ Ancestori and xLCA ∈ Ancestorj .

Definition 2 A pair of values (r, c) ∈ Di × Dj of two
variables xi , xj that share a constraint fij is cross edge
consistent (CeC) if and only for any sequence of variables
(xi = xp1 , xp2 , . . . , xLCA, xc1 , xc2, ..., xcm = xj ) such
that fprps ∈ F , fcrcs ∈ F where r ≤ s ≤ r + 1,
par(cs) = cr , par(ps) = pr and xi , xj have a CE
relationship (Definition 1) and there exists a tuple of values
(r = vk1 , ..., vLCA, ..., vkm = c) such that vkq ∈ Dkq and
(vkp , vkq ) ∈ fkpkq , for each 1 ≤ q ≤ m and p ≤ q ≤ p + 1.

Definition 3 A DCOP is cross edge consistent (CeC) if
and only for any pair of variables (xi, xj ) that share a CE
relationship and any (u, v) ∈ fij , (u, v) is cross edge
consistent.

Definition 4 Given a DCOP, the Consistency Matrix Mij

of two variables xi and xj is a binary matrix of size Di ×
Dj , where Mi,j [r, c] = 1 iff for a sequence of variables
(xi = xp1, xp2 , . . . , xLCA, xc1, xc2, ..., xcm = xj ), there
exists tuple of values (r = vk1 , ..., vLCA, ..., vkm = c) such
that vkq ∈ Dkq and (vkp , vkq ) ∈ fkpkq , for each 1 ≤ q ≤ m

and p ≤ q ≤ p + 1.

Given this definition of cross-edge consistency, in
Section 3.1, we give detailed description of the algorithm.
Next, in Section 3.2, we provide a worked example of the
algorithm.

3.1 AlgorithmDescription

CeC-DPOP consists of four phases: BFS pseudo tree
construction, consistency enforcement, UTIL propagation,

and VALUE propagation phase. Initially, a BFS pseudo
tree is constructed from the constraint graph. In order to
generate the corresponding BFS pseudo tree, we use the
same method as prescribed in the BFS-DPOP algorithm. For
example, Fig. 4 illustrates a sample BFS pseudo tree of the
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constraint graph depicted in Fig. 1. Having a BFS pseudo
treeGbf s constructed, CeC-DPOP enforces arc-consistency.
This phase uses the distributed Arc-Consistency (AC)
algorithm that is introduced in BrC-DPOP. This algorithm
results in a reduced domain for all the variables having hard
constraints.

After arc-consistency is achieved, CeC-DPOP enforces
a new form of consistency (i.e. cross-edge consistency) on

the BFS pseudo tree. To do so, we need the lowest common
ancestor LCA(xi, xj ) for every pair of variables xi and xj

in Gbf s . To find the LCA of every pair of variables, we use
[21], a distributed algorithm. To represent hard constraints
we use Consistency Matrices (Definition 4), where a matrix
Mij represents a hard constraint between variables, xi and
xj .

Now the algorithm enforces cross edge consistency on
the pseudo tree Gbf s . For this, we need to construct a
path for each cross-edge in Gbf s (Algorithm 1). In more
detail, the BFS pseudo tree Gbf s , parent set P and set of
child C are the inputs of the algorithm. We construct a
list, NEXTi , which contains the pair, (xl, xc), throughout
this algorithm phase. It informs the current agent xi about
the next agent xc to enforce cross-edge consistency for that
edge whose endpoints have a LCA at xl . The for loop in
line 1 selects a cross edge having one end point xi from
Gbf s , and sends a message NEXT UPDAT E(xl, xi) to
its parent Pi . This message contains information about the
LCA xl of two variables xi and xj and the current variable
xi . To do this, line 2 computes a LCA, xl of xi with
another variable xj with whom it holds cross edge. Then in
line 3, xi sends a NEXT UPDAT E(xl, xi) to its parent
Pi . In line 4, CeC-DPOP checks whether xi is a member
of a cross edge, and if this is not the case, it sends a
NEXT UPDAT E(NULL, xi) to parent Pi . Here, NULL
indicates that xi is not an end point of any cross edge.

Afterwards, the while loop in line 6 compares a counter
variable, cnt nexti , with the child count of current variable
(i.e. |Ci |) to check whether the current variable received a
NEXT UPDAT E message from each child in Ci . Within
this loop, if a NEXT UPDAT E(xl, xc) is received from a
child then (xl, xc) is appended to the list, NEXTi (line 7-8).
Then line 9 checks for any complete(xc) message received

from a child. This message informs the current variable xi

that the path construction for the sub tree rooted at xc is
complete. For each received complete(xc) message, line
10 increments cnt nexti by 1. The while loop terminates
when each child xc in Ci sends a complete(xc) message.
Now, in line 11, the algorithm checks whether NEXTi is
not empty. If this is true, the for loop in line 12 selects
each (xl, xc) pair from the NEXTi list and line 13 sends
a NEXT UPDAT E(xl, xi) message to Pi . Next, the
algorithm terminates after sending a complete(xi) message
to Pi after line 14. The NEXTi list thus computed holds
information about the next variable to enforce cross-edge
consistency, from current variable xi .

Finally, we enforce cross-edge consistency on the path
that is established on the pseudo tree (Algorithm 2). The
BFS pseudo treeGbf s , set of ConsistencyMatricesM, set of
child C and the NEXT list are the inputs of the algorithm.
The algorithm works as follows. Line 1 checks whether the
current variable xi is root. If it is, it initiates CeC message
propagation by iterating every child using the for loop in
line 2. Line 3 then sends a CeC(xi, Mii) to every xc in
Ci , where xi is the variable which sent the message along
with its Consistency Matrix Mii . Line 4 of the algorithm
checks whether any CeC message has been received from
its parent. If this is the case, line 5 iterates over each pair
(xl, xc) of the NEXTi list to propagate a CeC message. For
this purpose, lines 6-7 checks whether the current variable
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equals the LCA xl of a cross edge in the subtree. If this is the
case, it initializes Mil with its unary constraint Mii which
represents the domain of the current variable xi . Otherwise,
lines 8-9 computes Mil , which is a multiplication of Mip

and Mpl . Next, line 10 checks whether xc is not null. If
this is true, line 11 sends a CeC(xi, Mil) message to xc.
Now, lines 12-13 of the algorithm checks whether any child
exists that did not receive any CeC message. If this is
true, xi sends a CeC(xi, NULL) to that child. Lines 14-16
finally compute the Consistency Matrices along each cross
edge by iterating over every cross edge and multiplying
the matrices obtained for each endpoint of the cross edge.
After cross edge consistency is enforced, we obtain a set
of variables with reduced domain size. Now, we execute
the UTIL and VALUE propagation phase. These two steps
correspond to the UTIL and VALUE propagation phases of
the BFS-DPOP algorithm.

3.2Worked Example

In this sub-section, we present a working example of the
algorithm that we introduced in Section 3.1. Initially our
algorithm constructs a BFS pseudo-tree (Fig. 5b) from the
constraint graph (Fig. 5a). From the pseudo-tree, we observe
a cross-edge x5 − x6. Then, for convenience we show
CeC enforcement in a section of the original pseudo-tree
(Fig. 5c). For our example, we assume each variable xi has
a domain Di={0, 1, 2, 3, 4}. After pseudo-tree construction,
the algorithm enforces arc-consistency. AC propagation
reduces the domain size of a variable by removing values,
which are not satisfied by the hard constraints related to
that variable. The effect of AC propagation on Fig. 5c is
shown in Fig. 6. Now the algorithm enforces cross-edge
consistency following the steps described in the upcoming
sections:

3.2.1 Path Construction

From the pseudo-tree the algorithm detects a cross-
edge connecting x5 and x6 and finds LCA(x5, x6) =

x1. Now, agent a5 sends NEXT UPDAT E(x1, x5) to
its parent a2. Afterwards a5 sends complete(x5) to its
parent a2. This message indicates that agent a5 has no
other NEXT UPDAT E message to send to a2. After
receiving NEXT UPDAT E(x1, x5), agent a2 appends
(x1, x5) to NEXT2. Now, the NEXT2 list contains
{(x1, x5)}. After updating the NEXT list, agent a2 sends
NEXT UPDAT E(x1, x2) to its parent a1. Agent a2
completes its path construction by sending complete(x2)

message to a1.
In a similar process, agent a6 sends NEXT UPDATE

(x1, x6) and later sends complete(x6) to its parent a3. On
receiving a NEXT UPDATE message, agent a3 appends
(x1, x6) toNEXT3 and sendsNEXT UPDATE(x1, x3) to its
parent a1. Finally, a3 sends complete(x3) to a1. On receiv-
ing NEXT UPDATE(x1, x2) and NEXT UPDATE(x1, x3),
agent a1, appends {(x1, x2), (x1, x3)} to NEXT1. The
NEXT1 list contains information about two agents a2 and
a3. Likewise, the list, NEXT2 and NEXT3 contain infor-
mation about agent a5 and a6 respectively. This way, we
have two paths from agent a1 to the endpoints of the
cross-edge x5 − x6. The course to cross-edge consistency
enforcement is now set. The path construction phase can be
visualized with the help of Fig. 7. In the next phase CeC

messages are propagated along these paths.

3.2.2 CeC Propagation Phase

The CeC propagation begins from the root agent, a1. Agent
a1 sends CeC(x1, M11) to its child, a2 and a3. Agent a2
on receiving CeC(x1, M11) calculates M21 = M21 × M11.
Afterwards, agent a2, sends CeC(x2, M21) to a5. Agent a5
on receiving this message, calculates M51 = M52 × M21.

Similarly, agent a3 on receiving CeC(x1, M11) from a1,
calculates M31 = M31 × M11. Agent a3 iterates its NEXT3
list and sends CeC(x3, M31) to a6. Agent a6 on receiving
this message calculates M61 = M63 × M31. Finally, the
algorithm calculates M56 = M51 ×M16. Consistency Matrix
M56 gives the reduced number of assignable pairs along
x5 and x6. In our example the algorithm results in a 76%

Fig. 5 Pseudo-tree construction phase
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Fig. 6 Arc consistency
enforcement phase

reduction (Fig. 9). The simulation for CeC propagation
in our example is shown in Fig. 8. In the next section,
we will discuss the complexity analysis (Section 4) of the
algorithm. Following, the complexity analysis, we provide
a theoretical analysis of the algorithm, to show that CeC-
DPOP is complete and correct (Section 5).

4 Complexity Analysis

Initially, we discuss the complexity of the DPOP algorithm.
Given a graph and an ordering of its nodes, when processing
the nodes in that order, the width of the current node is the
number of neighbours that precede it in the ordering. The
induced width of an ordering of nodes is the largest width

of any node in that ordering. For DPOP, the complexity lies
in the maximal utility message size which is exponential in
the induced width of the DFS pseudo-tree, O(dw∗

). Here, d
is the domain size of the variables.

Improving DPOP for making use of hard constraints, BrC-
DPOP employs branch consistency to reduce the domain d

to dbrc, where dbrc ≤ d . Hence, the complexity stands as
O(dw∗

brc). On the other hand, BFS-DPOP reduces the induced
width to the order of the maximal size of cross-edge cluster.
The cross-edge cluster of a node is the number of cross-
edges connecting the node. Thus, if the maximum size of a
cross-edge cluster is |CEC|, the complexity of BFS-DPOP
is O(|X|.d |CEC|+2). Here, |X| is the number of variables.

As stated above, CeC-DPOP enforces cross-edge consis-
tency and use a breadth-first search pseudo-tree. To enforce

Fig. 7 Path construction
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Fig. 8 Cross-Edge consistency (CeC) propagation phase

cross-edge consistency, CeC-DPOP constructs a path and
then enforces arc-consistency along the path. In the path
construction phase, each node sends a message to its par-
ent containing the path information starting from one end
of the cross edge to itself. This continues until the infor-
mation reaches the least common ancestor of the two cross
edge endpoints. Therefore, the complexity of this phase is
O(|CE| log(|X|)), where |CE| is the number of cross-edges
and |X| is the number of variables. This particular phase
requires the lowest common ancestor for each pair of nodes
associated with that path, which is found in a preprocessing

Fig. 9 Consistent pairs along cross-edge after applying CeC-DPOP
which shows an overall 76% domain size reduction (straight lines
indicate a possible value assignment for x5 and x6)

phase having a complexity of O(log(|X|)). The next phase
is the arc-consistency enforcement phase. In this phase, each
hard constraint is evaluated to check whether the domain of
both variables connecting the endpoints is consistent with
each other. Given the number of hard constraints is CH and
the average domain of each variable is d , the complexity of
this phase isO(CH d3). Here, in order to check whether each
value in the domain of an endpoint is consistent with every
value of the other endpoint, it requires three nested loops,
resulting in d3 computations. The final phase then enforces
cross-edge consistency. In this phase, each agent waits for
its parent agent to send a CeC message which it uses to find
the final cross-edge consistent matrix. This requires a com-
plexity ofO(d3) indicating a multiplication of two matrices.
The process continues for each variable, and as such, the
total complexity of the cross-edge consistency enforcement
phase is O(|X|(d3)).

The arc-consistency enforcement phase requires
O(d|X|) messages, where the size of each message is
O(d). In each step of arc-consistency enforcement, only the
domain information of a variable needs to be propagated.
Therefore, the cross-edge consistency enforcement phase
requires O(CH ) messages and the size of each message is
O(d2). In this phase, we only propagate CeC messages each
of which contains the Consistency Matrices and the size of
a message depends on the size of these matrices. There-
fore, the overall time complexity for enforcing cross-edge
consistency is O(|CE| log(|X|) + CH d3 + |X|(d3)) and
the total number of messages exchanged is O(d|X| + CH ).
The entire process of cross-edge consistency enforcement
is insignificant to the complexity of UTIL and VALUE
propagation and thus it does not affect the overall complex-
ity. After, enforcing cross-edge consistency, the algorithm
executes DPOP UTIL and VALUE propagation. For this
the complexity is O(|X|.d |CEC|+2

cec ).

5 Theoretical Analysis

In this section, we prove CeC-DPOP is both complete and
correct. Similar to BFS-DPOP, CeC-DPOP makes use of
the DPOP’s UTIL and VALUE propagation phase, which
produces an exact solution of a given DCOP. Therefore,
CeC-DPOP is complete and correct if we can prove that
a DCOP is arc and cross-edge consistent (Definition 2)
after the AC propagation and CeC propagation phases,
respectively. As we utilize the same AC propagation phase
as the BrC-DPOP paper, the former is true (see [5] for the
proof). Theorem 1 proves the latter.

Theorem 1 The DCOP is cross edge consistent after the
CeC propagation phase.
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Proof Let, xi and xj be the end points of a cross-edge.
According to our path construction phase, we have two
paths xk1 = xl, ...., xkn = xi and xk′

1
= xl, ..., xk′

m
= xj ,

where xl is the lowest common ancestor of xi and xj . All
the arcs in the path (xl, xi) and (xl, xj ) are arc consistent
after the AC propagation phase. Now, CeC-DPOP enforces
cross-edge consistency along these paths and we obtain
Consistency Matrices, Mli , Mlj from the paths (xl, xi) and
(xl, xj ), respectively (Algorithm 2: line 9).

Mli = Mlk2 × Mk2k3 × ..... × Mkn−1i (2)

Mlj = Mlk′
2
× Mk′

2k
′
3
× ..... × Mk′

m−1j
(3)

Finally, from lines 15-16 (Algorithm 2), we obtain the
Consistency Matrix Mij using the following equation:
Mlj = MT

j l.

Mij = Mil × Mlj (4)

Matrix Mij is cross edge consistent becauseMil defines that
xi and xl are path consistent and Mlj defines that xl and
xj are path consistent by definition. So multiplying them
will make xi and xj path consistent which in effect is cross
edge consistent. Since this is true for a single cross-edge, it
is also true for every other cross-edge. Therefore, the given
DCOP is cross-edge consistent after cross-edge consistency
enforcement.

6 Experimental Results

We now empirically evaluate how much performance
improvement can be attained using CeC-DPOP in compar-
ison to the original DPOP algorithm and three important
variants of DPOP (BFS-DPOP, BrC-DPOP, and H-DPOP).
Unlike CeC-DPOP, the original DPOP uses a DFS pseudo-
tree as the communication structure and does not actively
exploit hard constraints. Therefore, it is reasonable to
observe the attributes of CeC-DPOP (i.e. inclusion of soft
constraints along with hard constraints and the use of BFS
pseudo-tree as the communication structure) with respect
to the original DPOP. Additionally, we consider the BFS-
DPOP algorithm as a benchmark because it also uses a
BFS pseudo-tree as the communication structure. Finally,
we compare CeC-DPOP with BrC-DPOP and H-DPOP as
these algorithms can deal with DCOPs having both types
of constraints. To benchmark the runtime of our algorithm
CeC-DPOP, we run our experiments on two standard types
of DCOP settings: random constraint graphs and the dis-
tributed RLFA problems. We are particularly influenced by
the BrC-DPOP paper in choosing the above experimental
settings.

In the case of random DCOPs, the runtime of the algo-
rithms are reported varying four parameters: domain size,

graph density, the density of hard constraints (i.e. the ratio
of the number of hard constraints and n ∗ (n − 1)/2 where
n is the number of variables) and the number of variables.
For the first parameter, we vary the domain size from 26
to 40 in Fig. 10. Here we set the number of variables X

at 20 and edges are created by taking pairs of variables
randomly and connecting them considering a fixed graph
density, ρ = 0.5, and fixed hard constraint density 0.4. For
the second parameter, we execute the algorithms by chang-
ing the graph density from 0.2 to 0.9 in Fig. 11. Here, we
set the number of variables X at 20, domain size, D at
10 and hard constraint density at 0.4. Then for the third
parameter, we increase the density of hard constraints from
0.2 to 0.9 in Fig. 12 setting the number of variables at 20,
domain size at 10 and graph density at 0.4. Finally, we vary
the number of variables, setting graph density ρ = 0.5,
domain size, D at 10 and hard constraint density at 0.4.
In our experiments, we generate 30 instances and calculate
the average runtime of running each of the algorithms. We
also recorded standard errors to ensure statistical signifi-
cance. For the third experiment (Fig. 12), we only compared
CeC-DPOP with BrC-DPOP and H-DPOP. Amongst DPOP,
BFS-DPOP, BrC-DPOP, and H-DPOP, only BrC-DPOP and
H-DPOP can make use of hard constraints to prune domain
and thus, varying density of hard constraints (keeping the
remaining parameters constant) would not affect the run-
time of DPOP and BFS-DPOP. Therefore, for our third
experiment, we used BrC-DPOP as the benchmark. All
of the experiments were performed on a simulator imple-
mented in an Intel i7 Octacore 3.4GHzmachine with 16GB

of RAM.
Our experimental results for solving random DCOPs

are depicted in Figs. 10 – 13. Specifically, we use hard
constraints that are either “less than”, “greater than” or
“equal” alongside soft constraints for which we randomly
generated utility values from the range [0, 100]. In Fig. 10,
we observe the runtime of CeC-DPOP by varying the

Fig. 10 Domain size vs runtime (Random DCOP)
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Fig. 11 Graph density vs runtime (Random DCOP)

domain size. The reason behind this performance is that
when the domain size increases, more values in each
domain are pruned by CeC-DPOP through consistency
enforcement which produces UTIL message of smaller
dimensions. As a result, the required time to compute
messages decreases at a significant rate. Though BrC-DPOP
has a relatively smaller runtime than DPOP and BFS-
DPOP for enforcing branch consistency, CeC-DPOP always
outperforms through enforcing cross edge consistency. Here
we observe that the runtime of CeC-DPOP is 70 − 73%
smaller than DPOP, 22−43% than BFS-DPOP and 19−33%
than BrC-DPOP.

Figure 11 illustrates the results based on the next setting;
that is, varying the graph density while setting the number
of nodes, domain size and density of hard constraint as
constants. Here we observe that the runtime of CeC-DPOP
is 56 − 70% smaller than DPOP, 34 − 54% than BFS-
DPOP and 21 − 40% than BrC-DPOP. This behavior is
explained by the fact that CeC-DPOP uses a BFS pseudo-
tree as the communication structure which is generated
from dense constraint graphs which give more branches. As
a result, more parallelism is experienced. Another reason

Fig. 12 Density of hard constraint vs runtime (Random DCOP)

Fig. 13 Number of variables vs runtime (Random DCOP)

is that the number of edges is relatively higher in the
dense constraint graphs, creating the opportunity of cross-
edge consistency enforcement at a significant level. Thus,
more domain values are pruned and shorter messages are
produced resulting in smaller computation time. Overall, a
significant reduction in runtime is observed.

In the third experimental setting, we vary the density
of hard constraints and set the other three parameters as
constants (Fig. 12). We observe a notable performance gain
of CeC-DPOP in terms of runtime compared to the other
algorithms. In particular, we detect a 16 − 20% reduction
of runtime in comparison to BrC-DPOP and a 55 − 75%
reduction in comparison to H-DPOP. With the increase in
the density of hard constraints, CeC-DPOP is able to prune
more values, compared to BrC-DPOP and H-DPOP. This
results in shorter message sizes and an overall reduction in
runtime. Finally, we vary the number of variables and set the
other three parameters as a constant (Fig. 13). The results
obtained are similar to the first three experiments on random
DCOPs. More specifically, CeC-DPOP outperforms other
algorithms contributing a 18−96%, 10−89% and 5−67%
reduction in runtime relative to DPOP, BFS-DPOP, and
BrC-DPOP.

Fig. 14 domain size vs runtime (RLFA Problem)
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Fig. 15 graph density vs runtime (RLFA Problem)

As already mentioned, the Distributed RLFA Problem
is the second type of problem to evaluate CeC-DPOP
against the benchmarking algorithms. The distributed RLFA
problem [1] consists of a set of channels, each having a
transmitter and receiver at both ends. The aim is to assign
a frequency from a given set F by minimizing the total
interference at the receivers below an acceptable level (hard
constraints) and at the same time using as few and also
as low frequencies as possible (soft constraints). For our
experiment, we mapped a transmitter as a variable and
for simplicity, we assigned a single agent to a variable.
The domain of a variable consists of frequencies (chosen
from available spectral resources) that can be assigned to a
variable. The interference between transmitter is modeled
as a constraint of the form xi − xj > s where xi , xj are
variables and s is a random frequency separation. For this
problem, we varied three parameters: domain size, graph
density and the number of variables.

In Fig. 14 we varied the domain size, setting the number
of variables at 20, s ∈ {3, 4} and graph density, ρ = 0.5. The

Fig. 16 number of variable vs runtime (RLFA Problem)

Table 1 Total number of assignable pairs after AC propagation and
CeC propagation varying the domain size on random DCOPs

Domain size After AC propagation After CeC propagation

10 16384 14887

20 79524 77535

30 274576 262037

40 492804 489839

results are similar to those observed for random DCOPs.
Here we observe that the runtime of CeC-DPOP is 68−72%
smaller than DPOP, 13−27% than BFS-DPOP and 9−20%
than BrC-DPOP. Next, in Fig. 15, we varied the graph
density, setting number of variables at 20, s ∈ {3, 4} and
domain size, D = 10. Here we observe that the runtime of
CeC-DPOP is 43−70% smaller than DPOP, 21−50% than
BFS-DPOP and 10−22% than BrC-DPOP. Lastly, we varied
the number of variables in Fig. 16, setting graph density,
ρ = 0.5, s ∈ {3, 4} and domain size, D = 10. Here we
observe that the runtime of CeC-DPOP is 27− 95% smaller
than DPOP, 18 − 82% than BFS-DPOP and 4 − 64% than
BrC-DPOP.

In order to compare CeC propagation to AC propagation,
we conducted another experiment. Here, we varied the
domain size of a random DCOP setting the number of
variables at 20, hard constraint density, 0.4 and graph
density, ρ = 0.5. We recorded the total number of
assignable pairs after AC and CeC propagation. The
results are shown in Table 1. This shows, even after AC
propagation, we get an additional 30 − 40% reduction after
CeC propagation (on average). This further reduction is
observed since AC propagation is not entirely capable of
removing all non-assignable value pairs. A summary of the
experimental analysis is shown in Table 2. Here, we also

Table 2 Summary of experimental results showing the reduction of the
runtime of CeC-DPOP in comparison to the other algorithms

DPOP BFS-DPOP BrC-DPOP H-DPOP

Random DCOPs

Number of variables 18-96% 10-89% 5-67% –

Domain Size 70-73% 22-43% 19-33% –

Graph density 56-70% 34-54% 21-40% –

Density of – – 16-20% 55-75%

hard-constraints

Distributed RLFA problem

Number of variables 27-95% 18-82% 4-64% –

Domain size 68-72% 13-27% 9-20% –

Graph density 43-70% 21-50% 10-22% –
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show the reduced runtime of CeC-DPOP in comparison to
the benchmarks.

7 Conclusions

DCOPs have been used to solve different multi-agent
coordination problems since the last one and a half decade.
The existing algorithms that deal with DCOPs do not
actively utilize hard constraints in solving such problems.
To address the shortcoming, We present a new algorithm,
CeC-DPOP, that significantly reduces the runtime of the
DPOP algorithm that can be used to solve DCOPs having
both soft and hard constraints. This is possible due to
the introduction of a new type of consistency, that we
call cross edge consistency. Additionally, CeC-DPOP uses
BFS pseudo-tree as the communication structure that
further accelerate the message passing process through
enhance parallelism. Finally, we empirically observe that
our algorithm performs around 5-96% faster than the current
state-of-the-art algorithms.

Now, the contribution of our paper have thrown up
few new questions that need further investigation. In the
future, we intend to investigate how much speedup can be
achieved applying our approach to other DPOP extensions
(e.g. O-DPOP, MB-DPOP, SS-DPOP). Moreover, we intend
to reduce the size of the consistency matrix while
maintaining the quality of the solution. In so doing, we
can make our approach more compatible with higher
dimension constraints; and in effect, further reduce memory
requirements of a given DPOP algorithm. As a result, CeC-
DPOP would extend the use of DPOP in solving real-life
problems including Distributed RLFA problems that include
both hard and soft constraints. Furthermore, since the cross
edge consistency has only been applied to exact inference
based DCOP algorithm, we would like to further investigate
whether it can be tailored to different non-exact DCOP
algorithms.
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